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SUMMARY

A practical method for solving plastic deformation problems in the
elastic-plastic range is presented. The method is one of successive
apprcxhnations snd is illustrated by four exsmples which include a flat
plate with temperature distributicm across the width, a thin shell with
sxial temperature distributim, a solid cylinder with radial temperature
distribution, and a rotating disk with radial temperature distribution.

13iTROlXJCTION

The calculation of stresses in structural camponents in which plas-
tic flow is considered is cuxrently of great interest in order to take
full advantage of the load-carrying capacity of available materials.
Little attention, however, has been directed at providing sinrple,genersl
methcds which cam be applied by the engineer towsrd the solution of prac-
tical problems. This report presents such a method snd its applications
to several problems of current interest. Although use is made of a
technique aristig in the theory of integral equatims, no knowledge of
integral equations is required, and the math-tics involved is welJ.
within the scope of the practicing engineer.

The method, which is one of successive integrations, is illustrated
for four clifferent thermal stress problems which include the flat plate
with temperature variation along the width, the thin cylindrical shell
with axial temperature distribution, the solid cylinder with radial tem-
perature distribution, and the rotating disk tith radial.temperature dis-
tribution. The techniques illustrated are not, however, limited to ther-
mal stress problems. The first three problems considered involve small
plastic strains, that is, on the ssme order of magnitude as the elastic
strains. The fourth problem involves strains on the order of 1 percent.
The deformation theory of plasticity with the Von Mises yield condition
is used. Other yield creditions, however, could be used.
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METHOD
.

The determination of stresses and strains in a body consists of com-
bining the equations of equilibrium snd compatibility with the “stress-
strain” relation snd integrating the resuiting equatims.

—
For both elas-

tic and plastic problems the same equations result for equilibrium and
—

campatibility; the difference in the two cases consists of the stress-
—

strain relation. h the elastic case a linesx relation applies between
stress ad strain, thus resulting in linear differential eqyations which
can be solved by standard methods. The occurrence of plastic flow great- [
l.ycmpM.cates the problem by introducing.anonlinear stress-strain rela-

Z
K

tion resulting in a nonlinesr differential eqution for which direct
solutions msy be clifficult or impossible to obtain.

.
The present report

demonstrates a relatively simple method for obtaining approximate solu-
tIons to the resulting nonlinesr differential equations whereby the equa-
tions are first converted to nmlinear integral equations and then solved
by the established mathematical technique of Successive integat iCXCM..

The principle underlying the successive integraticn method of the —

solution of plastic flow problems can best be illustratedby m example
which is treated in greater detail in the section EXMIl?LKl. For a flat ~
plate subject to a teqerature variatim along the chord -5
T= 600(Y2 - 1/3) + TO the total.strain e due to stress is givm by

J
1

E = -o.oo570(y2 - 1/3) -1- Gep w
o

.

(1}

where the plastic strain
%

is a function of the total strain e

(fig. 1). (M-l synibol-sare defined in appendti A.)

A convenient method for solvimg equation (1) is to approach the
solution h successive steps by organizing the computations so that the
bothersome nonlinear terms are treated not as unknowns but as known
quantities determinable from a previous iteratim. For example, as a
zeroth approximateion, let it be SSsmed that eep = O for all values of

—

Y. Then equt ion (1) permits direct ccmwtat ion of,
of y. Once the total strain e is determined, the
of the strain eep may be obtained by inspection of

curve (fig. 1) or by simple computation. lt iS thus
computation to include the ‘ep terms as deteradned

putation, and thus scmewhat more accurate values of

e for all values
plastic compon-t
the stress-strain

possible in the next
frcm the first ccm.-
e can be obtained.

~se h- turn lead to more accurate values of
%Q ‘

and the process is

repeated, each time with the plastic strain terms deterdned in the pre-
vious iteration being treated as lmown quad ities.

A

When successive iter-
ations lead to no change in e or ‘ep ) it nwaifestly makes no difference

●
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whether the eep terms apply to the current

Equation (1) is now satisfied to the desired
correct solution is therefore obtained.

3

or previous iteraticm.

degree of accuracy, and the

The simple exemple ti the flat plate Just i13.ustratedinvolves uni-
axial stress, hence it is possible to determine directly plastic strain
once the total strains are known. In most cases of practical interest
the stresses sre biaxial or triaxisl, ad the formal procedure for carry-
ing through the computations can be illustrated by referring to the case
of the long solid cylinder with radial temperature distributim, which is
also treated in greater detail in the section Long Solid Cyltider. By
manipulating the equilibrium and compatibility equations end the stress-
strati relations, expressions for the total strains h three principal
directions sxe derived in integxal equation forms of the type

(2)

with similar expressions for ee and ez. If em attempt is made to write

a direct relation between the elastic and plastic strains derived frmn
plasticity laws and this relation is substituted in equation (2), compli-
cated nonlinear integral equ&tims result which do not readily admit solu-
tion. These ccmrplicationscan again be avoidedby the process of succes-
sive integrations. The zeroth approximation for the tchl strains er,

Ce, and ez is determined by neglecting the integral term, thereby Cr

is made equal to f(r) with similar assumptions for ee and ez. For

these values of total.strains the plastic straims are determined as will
be discussed presently. These values of plastic strains are now treated
as @own values and substituted tito equatim (2) to determine first
approximateions to total strains er, ee, sad ez fran which new a~rox-

imations to the plastic strains can be determined. The prmess is re-
peated as many t@s as necessary until successive apprmimations show
sufficiently little change in total or plastic strains to permit being
considered as converged to the correct solution.

It msy be noted that the method of successive integrations is not
completely new in application to plastic flow problems. 11.yushin’s
treatment of the thin shell.(ref. 1) is essentiaU.y a successive inte-
gration process similar to that discussed in this report. Although he
regarded the successive iterations as a series of artificial elastic
problems, the mechanics of the computations me identical to those re-
sulting when the problem is treated strictly in its mathematical sense
of successive integrations of a nonlinear integrsl equation. ti the
present paper the thin shelJ pr&lem is treated without the restrictions
imposed by Ilyushin of lines strain-hardentig and of complete inccmpres-
sibility in the elastic-plastic range.
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In order to determine new values for

% frcm the values of the total strains
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.
the pl.astic strains

“% ‘d
~r? e~, and GZ as calculated

by”equations such as equation (2), a stress-stmti relation for biaxial
.

or triaxial stresses in the elastic-plastic range is needed. It will be
seen that the validity of the method does not depend on the precise form
of the stress-strain relations, but for illustrativepurposes it was nec-
essary to select specific relations. The relatimm of the deformation
theory of plasticity were therefo~ used. Appendix B shows that by in-

—

troducing the concept of equivalent total strain, the plastic strains can -s
be computed from the total strains in a stiple fashion. Thus, the equlv- :
alent total strain Get may be defined as follows:

Then the plastic strains are given by:

(3)

(4)

where eep is the equivalent plastic strain as shown on the unisxial

tensile curve of fimxre 1. Furthermore, it is shown in appendix B that
the equivalent totai strain eet Cm be W-itten

.t=zQJA52+G
e 3 E ep

where the equivalent stress ae is the ordinate

strain curve as shown in figwe 1. Stice,.for a

as follows:

(5)

of the uniaxial stress-
given value of een,

‘e cam be directly detemined from this stress-strati curvej equation

(5) permits the direct constructicm of a curve of eet against eep as

shown in figure 2. The computation of the plastic strains thus becomes
very s~le. For a given set of values of tot~ stra~j Get iS cm~ted

from equation (3). For this value of ~et, eep iS read fr~ figure 2)

and Em and eep are then ccmputed from equations (4). These values

of
%P

and eep are substituted into eqmtions such aa eqwticm (2) to

obtain new values for the total.strains erj eej ud ~z.
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b some cases it is possible to expedite the calculaticm of plastic
strains for known values of total strains by preparing charts in advsmce
of the calcula.tion. Use of such charts wti be illustrated in the e.xsm-
ples for the thin circular shell.

The question arises as to whether the process is always convergent
to the correct solution, or whether it is possible at some point for suc-
cessive solutions to become worse than earlier ones, thus they could lead
ultimately to meaningless results. W all the cases treated in this re-
port it can be shown that the functions appear- in the integral eq,,-
tions satisfy the conditions necessary for the convergence of the process
(ref. 2); hence, the correct solution must result if a sufficiently large
n~er of iterations are performed. However, for sme problems the rate
of convergence may be ve~ slow, and a large number of iterations may be
requtied to obtati a solution of the desired accuracy. Two devices may
be employed to expedite the convergence. It appesrs reasonable to assume
that the closer the initially assmed solutim is to the correct solution,
the fewer the number of iterations that will be required before conver-
gence will result. Hence, any knowl~ge or insight possessed by the in-
vestigator should be used to estimate the zeroth apprmdmat ion, rather
than obtaining it by assuming all plastic strains to be zero. Solution
to related problems, solutions by other approximate or simpler methods,

8 ts, physical intuition,approximate measurem.en or other expedients acces-
sible to the investigator may all be used to good advantage. For exsmple,
sane problems may be formulated in which the stresses will evidently
change little because of plastic flow, md the strains will have to assume
whatever values are necessv to permit these stresses to be generated.
(This is a contrasting case to that of thermally induced stress in which
the strains govern and take on apprmdmatel.y their elastically cmputed
values, and the stresses adjust accordi@ly. } ti such cases it may be
better to start with an assumed initial stress distri.bution, compute the
corresponding elastic straims from the stress-strati relation, and pro-
ceed with successive integrationsbased on this hit ial strain
distribution.

Even when no insight into the correct solution is available, conver-
gence may still be expedited by noting essentially the rate at which suc-
cessive iterations change the strain distribution. A formal technique
using this concept is illustrated in this report in connection with the
rotat@ disk. It also should be noted that,if high-speed ccmputing ma-
chinery is used, the mm.ber of successive approximations required for
convergence becomes of lesser importance. The nethod will now be illust-
rated for four different problems.
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As a first
finite plate of

ExAMmEs

Thin Flat Plate

exsmple, consider the s~le ~i~i~ c-e of a th~ ~-
width 2C with a temperature distributia T(y) across

the width. Under these cmdit ions, the only nonzero stress is

ox = ~x(Yl●
As in the usual theory of bending, it is assumed that plane

sections remain plaue. This requires that

% =a+by (6)

where a and b are constants to be

The stress-strain relaticn is
-1

determined.

air+

The boundary conditions require that

r
axw=o

-c

m

Ccmibinfigequations (6), (7), and (8) gives

c

f
E(a+by-~- QW = o

-c

\

J’

c
JYd Y=oE(a+by-ccT-e

-c J

If E is constant, equations (9) give

J
lC8‘s -c

Cd I!dy+ ul-c

z -c %PW

(7)

(8)

(9)

.

(10)

.

.
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A&o, in this case

7

% = ‘q

‘e = ax
}

Equations (6) csn now be written as follows:

(11)

(12)

As a specific exsmple, let

‘3!=6@y2 - 1/3) + TO

The stress-strain

E= 28X106

C=l

a= 9.5no-6

curve for the material
of syrmnetrycmly half the plate between
Equation (12) beccmes

G -dl?=e=x
-o.oo570(y2 -

is given by figure 1. Because
O and 1 need be considered.

(13)

Equation (13) is now solved by successive appraximations by using
the stress-strata curve (fig. 1). For the zeroth appraximaticn to the
total strains it is assumed that the totsl strains do not chsnge mch
fran those computed “elastically”and, therefore, that ‘ep is every-

where zero. The integral in equation (13) thus vanishes, and the strains
sxe computed. This is the elastica13.ycomputed strain distributicm.
With this strain distributia, a first appraimation to the plastic
strains eep is obtained directly frcm the stress-strain curve (fig. 1).

T5e integral in equation (13] is now evaluated, and a first approximatim
to the total.strains is obtained. With this first approximation, a sec-
ond approximateion to the plastic strains is cibtainedfrom the stress-
strain curve. The prceess is repeated until the desired ccmvergence is
obtained. The integral in eqya.tion(13) was evaluated simply by the
trapezoidal rule. More accurate evaluation, for exsmple, by Simpson’s
rule, csn be made if desired.



8 NACA TN 4088
.

The computaticms for this problem are shown in table 1, snd the re-
sults are plotted in fQure 3. The stresses, which are not shown in .

table 1, can be read directly from the stress-strati curve once the strains
are computed. These calculatims show that the first approximation is
sufficiently accurate and that the total strains are not much clifferent
from those computed elastically. This last result explains the fast con-
vergence M this method for this problm.

If the modulus of elasticity E is not constsnt, no additional dif-
ficulty is added. Solution of equation (9) gives, for a and b:

L/’

c

(/’
c

a . Al EaTdy+A1 E~dY-
-C -c

J

c

‘2 -c Edydy-+
J -c

c E~~ &$
1

J’

c

J’

c
b = -A2 Hdy-~ E~dy+

-c -c 1

J’

c

f

c
A3 m&Y+~3 E~Y Q

-c -c J

(14)

*

.

where Al, A2, and A3 are numiberswhich are determhed once and for all

for a particular problem frcm the known variation af E with terc~rature: —

nc I

f

c
Edy

-c

(15)

.

.
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3Y ustig these values for a and b the solutim is obtained by succes-
sive approximations as before. Of course, a different stress-strain
curve must be used at every staticm and is dependent on the temperature
of that station.

Thin Circular Shell

The second example considered is that
axial temperature gr-dient.
sented in appendix C, are

GZ = --J---+X+
l-v

where w is the solution of

The eqwt ions

(l+v)a.T+*

of

—

a thin circulhr shell with
for the total strains, pre-

~E/2
\

d% d%-q
—+4w=-4RaZ!— —
dx4 -2

and iS given by

W=c ~cosxcoshx+c2cos xs~x+c3stixcosh X+

J’
x

c4stClxs Mix-AR CLT(~)G(x - k]d~ -
0

f

x

J
p(g) a d~ - x Q(~)@x -

dx2

~)d~
o 0

(17)

(18)

.

.
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and

The term G(x - ~) is the Green’s function for this problem. Substitu-
tion verifies that eqwtion (18) is a solution of equation (17].

.

The solutim to the problem is ncw obtained by successive approxi-
mations starting with the assumption that ~ and SeB are zero. A

zeroth approximation to the total strains can-thus be o%tained from equa-
.—

tions (16) and (18). With these values of total strati, first approxi-
mations to the plastic strains % ‘d ‘en can be readily obtained 7“

as will.be shown. These first app%ximation~ to the plastic strains sre
stistituted in eqyations (16): (18): snd (19), and first approximations
to the total strains ~, co, and ~z are obtained. The process is re- “

peated as many times as necessary to give the desired convergence. For
every successive approximation the constants c1 to C4

—
appesring in—

equation (18) must be evaluated in order to satisfy the boundary
conditions.

To obtah the plastic strains ~ and em once the total strains

6X) %) and ez have been determined for any iteration, the stress-

strain curve and equations (3) and (4) are used. In order to facilitate
the computation of

%
and Cep, a cross plot is made of the stress-

strain curve as is shown in figure 2 by &“ans of equation (5) as pre-
viously explained. The process for obtaining the plastic strains %? “-”
and e~p frcm the total strains now becomes relatively sinrple. For a

given set of strains Cx, eej ~d ~z> the equivalent total strain ~et

is computed by equation (3). For this value of eet, Cep is obtained

from figure 2, and ~ and e~p are cmnputedby equations (4). It

should be noted that the curve in figure 2 is very close to a strai&ht
line. The equation of the “best fit” straight line was therefore used
in some of the computations. Representation of the curve by a functbna~ ‘“
relation is particularly useful if a given problem is set up for auto-

—

matic machine computation. .
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As an alternate procedure, the plastic strains ~ md S@ CS,II

be obtained directly frcm the total strains ~ and se by means of a
parametric fsmil.yof curves as shown in figure 4. For a given pair of
values of %- aT snd E6 - a.T,the plastic strains are read directly

from these curves. Figure 4 was obtained from the stress-strain curve
(fig. 1) as explained in appendtx D. This procedure avoids the neces-
Sity of Cclurputing e= frcm the last part of eqy.ations (16), Get fran

equation (3), snd ~ sad C@ fran eqya.tions (4). However, obtaining

a set of curves such as those in figure 5 involves a considerable smount
of labor, and it is usudl.y not worthwhile to make such a chart unless
several sMlar ccmputations are to be made using the ssme stress-strain
curve.

It is to be noted that the stresses can be ccmputed at sny step of
the calculation by the stress-strain relaticms:

The solution will now be illustrated
sider a thin circul.arshell
properties:

L= 48 h.

R =12 in.

H=2 in.

v = 0.3

V(ee - Ca

1

1
- ~@J

(20)

v(% - aT -
%]

for a spectiic problem. Con-
with the following ge-&etric ‘-d physical

F4z
R2H2

= = 3.81
3(1 - V2)

E = 2W06 lb/sq in.

a= 9.5xlo-6 @

T= 2.21x2 (corresponds
one end of

O<x< 12.6

im.

to 350° F rise frczn
shell to other)
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With the dress-strain curve of figure 1 and the foKlowing boundary
conditions

w(o)

the functions P S@

P

(22)

m

= w’(o) = w(12.6) = w’(L2.6) = O (21)

Q beccme

J

1
= 21.8

1

(em+ o.3Eep)z dz
-1

f

1
Q=24

-1
%p ‘z

From the first two boundary conditions,

c1 =0

C2 = -C3

Also, the first integral

Eqyation (18)

W(x) =

now beccmes

on the right side of eqwticm (18) becomes

~)d~ = 0.000252x2 + 0.000252 Sin X Sinll x

C2(COS x Sinh x - sinxcoshx)+c~sinx stnhx -

0.000252x2 - Ii(x) - 12(x) (23]

where

(24)

For the zeroth approximation, it is assumed that e

7

and Eep and,

therefore, 11 and 12 are zero. The function W(X is calculated from

equation (23) with the constants C2 and” C4 determined frm the last P-

two boundary conditiofis(eq. (21)). The strains ~, ~e, and ez are
--

.
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ccmputed frcm equations (16). First approximateions to < sud

are now obtained either directly frcm figure 5 or by computing ~et

equation (3), reading eep from figure 2, and calculating ~

‘ep frcnnequations (4). For this psxticular e.xsnrplefigure 5 was

used. For the two exaqles to be discussed subsequently, eqwtions (3)
and (4), in conjunction with figure 2, were used.

%p ad Em, P

With these values of
and Q are caquted from equations (22), w from equa-

tions (23) and (24), and new values of ~, ee, and Cz fran equatims

(16). The process is repeated until convergence is obtained.

Wherever derivatives of w are needed such as in the first part of
equations (16) and in equation (21), the followtig relatious sre useful:

and

(25)

.

.
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The integrals
trapezoidal mle.
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.

in equations (24) and (25) were evaluated using the
Thus, in order to evaluate the integrals at a station .

x= x,d

(27)

The results for this problem are shown in figure 5. An abbreviated
calculation setup for one of the successive approximateions is shown in :

table I(b). As many as seven successive approximationswere carried out
as shown in the figures, and the differences between the seventh and the
fourth appraxhations are very small. Fran em engineering viewpoint the
first apprmimation is actually sufficient. Again, the total strains
did not chsmge very much, which explatis the relatively rapid convergence. —

Long Solid Cylinder

The plsne strain problem of a long solid cylinder with a radial tem-
perature distribution is considered next. Appendix E shows that if the
malulus of elasticity E is asswned constant, the total strains me

m

given by

e~ = J
r

l+V1—.
1 -vr20

J
r

5=%0

nr

J’
R

aZ!rm

.0

J
R

1- 3V 1
%=mz ct&dr-

0

-J’
R

(Gm +

o

f

R

M
o

‘ep 1)r dr

.

.
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Equations (28) are now solved by successive approximations as for

the previous examples. The zeroth approximation to the total strains is
obtained from eq~tions (28) by assuming that e and ee

7

are zero.
The total equivalent strain is then computed by ~quation (3 , the equiv-
alent plastic strain is read fran figure 2, and first approximations to

% ‘d %p are obtained frcxnequations (4). ‘I&se values of
%

~d G6P are substituted into equations (28), snd new approximateions

are obt&ed for ~, ee, and ~z. The process is then repeated as many
times as necessary to obtati the desired degree of convergence. The
stresses can be ccmputed at any time frcm the general stress-strain
relations:

The above calculations have been carried out for a 1-inch-radius
cylinder with a temperature gradient as shown h figure 6 tid by using
the stress-strain curve of figure 1. The ccarputations sre shown in
table 1(c) for one iteration, and the results are plotted in figure 7.
Little difference occurred between the fourth and fifth appraximations.

Rotating Disk with Temperature Gradient

As a final example the plane stress prdblem of a parallel-sided ro-
tating disk with a radial temperature gradient and a constant vshe of
E will be considered. In this problem the strains are considerably
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l=ger than those
case, as shown in
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ti the previous examples. The total.strains for this
appendix F, are given by —

.

1-
E ~2++(l+v)aT+E=-e -—
r e E Q + ‘Gep +

[

r

(1-v) ‘rp;’eQ dr+c3

o

(30)

The solution to this problem is obtained by successive a~roximation
exactly as in the previous example for the solid cylinder. By starting
with assumed values of e- aad eep equal to Zero~ er~ ~ej ~d ~z

are computed frcm eqpations (30), eet fr~ eq~ti~ (3)~ eep from fig-

ure 2, and %P
and G~ frcm eqpa.tims (4). New values of ~, ce,

and ez are now obtained from equations (30), and the process is

repeated.

A solutim was obtained in this manner for a 10-tich-diameter disk

with a temperature gradient as shown in figure 8. The value of pm2 was
taken as 1500, and the stress-strain curve of figure 1 was used. The
ccmputations for one iteration are shown in table I(d), and the results

.

● ✍

✎

✎
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are plotted in figure 9. h this problem, the stratis are relatively
large, with the maximum.equivalent strati close to 1 percent. A straight-
forward application of this method therefore requires a~rcximately 40
iterations in order to obtain accurate results. However, the convergence
can be greatly increased by performing three or four iterations, taking
the clifferences between successive iterations for the vsrious straim,
and extrapolating to a zero Ctlfferenceas shown in figure 10. A root-
mean-square line is drawn, and the intercept at zero A= is obtained.
TM.s furnishes a new stsrting estimate. Three or four more successive
approximateions sre carried out, and another similar extrapolateion is made.
This technique reduced the mniber of successive approximateions for this
problem fran abat 40 to about 12.

This same problem was solved by the trial-and-error method of ref-
erence 3. The results obtained were almost identical to those obtained
herein as can be seen in figure 9.

DISCUSSION

The speed of cmurergence of this method depends primarily on two
factors: the smcmnt of plastic flow occurring, and the number of stations
tsken in the plastic region. For small plastic strains convergence will
be relatively fast. Similarly, for a small nuniberof stations in the
plastic region relatively few iteraticms are needed. If the number of
stations is increased, more iterations are needed for convergence to
occur. Thus, for the case of the thti shell of the second eximtrple,dou-
bling the number of stations approximately dcubles the mmiber of itera-
tions requtied for convergence. This is due to the fact that a change in
the a~roximt ion at one station changes the values at all the other sta-
tions, and the more stations there sxe the lcmger it takes for all the
stations to converge.

Increasing the nmiber of stations therefore increases the labor re-
quired for two reasons: the time per iteration goes up, and the n@er
of iterations required increases. Of course, the greater the nuniberof
stations used, the greater is the final accuracy attainable. Eowever,
gocd accuracy can be dbtained without ticreasing the labor greatly by
following one or both of the following techniques. A calculation is made
with a small ntier af stations to obtain an approximate plastic strain
distribution. This strain distribution is then used as a first approxi-
ration in a new calculaticm using more stations. AM o, an extrapolateim
technique such as shown in the rotating disk example can be used to speed
up convergence greatly. It should be noted that do@ltig the ntier of
s~ations For the thin-shell problem increased
maximum stress was changed by only about 2000.

.

the labor greatly, but the
pounds per square inch.
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An interestingpossible application 9$ the results of the method
presented herein my be worth further investigation. It has been fofid - +
that, for thermal stress problems withoutrtiditional loads, the totsl
strains do not change very much because of the plastic deformation co?i-

.=

pared to the elastically ccmputed strainsand that the first approxi.
mation to the stresses is thus usually fairly good. This leads to the ‘-’ ‘“
possibility of determining semiempiricallythe plastic thermal stresses
in complicated structures for which even the elastic stress distribution
cannot be calculated and for which strain measurements cannot readily
be made h the plastic region md at high temperatures. A model of the
structure can be constructed, and temperatures and temperature gradients
can be simulated on a proportionally reduced scale so that no PSJ% of
the model flom plastically. The total.elastic strains under these con- .

ditions can usually be readily measured by means of strain gages. The
elastic strains csm then be extrapolated]y simple proportion to those
that would exist at the higher temperatures and gradients actually @&ist-
ing in the structure. By assuming that the total strains are then equal ‘-
to the strains that would exist if the material remained elastic, the
plastic strains are computed from equations (3) and (4) and the stress-
strain curve, and an estimate of the stresses is obtained from the stress-
strain relations such as equations (29). From the exsmples presented
herein, it would seem that the stresses ccmputed b this msmner should
be accurate enough for many engineering ~plications.

a-.
—.

lh many practical problems it is necessary to take into account pre- ,
vious plastic flow that may have taken place. Thus, for example, in a
thermal shock experiment, plastic flow nls.ystart at scme time during the
quenching process, and the material may continue to flow plastically as
the prccess continues. A solution must therefore be obtained at various
time increments fran the start of the quench, and for each time intervsl
the plastic flow that has already occurred up to that time must be taken
into account. Treatment of this case is described h detail in appendix
G.

Althou@ the methcd has been presented for four specific”thermal
stress problems, it is apparent that it is general in nature and can be
applied to a large variety of problems for which the soluticns of the
elasticity eqyations are available. NO implicaticm is intended, however,
that this method is necessarily more accfiate or faster than other meth-
ods that might be used for spectiic problems. Thus, the example of the
rotating disk with temperature gradient csm be treated more rapidly by
the method of reference 3. The method of this report does, however, pro-
vide a unifom simple approach that can be used for many different types
of problems. It i; not->ecessary,
and techniques to handle clifferent

Finally, it should be pointed
simplicity the method has been set

therefore, to develap special.methods
types of problems.

F
out that, although for uniformity and
up by usti the equations for total

.
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strains (e.g., eq. (2)], it may be desirable in some cases to deal with
the equations for stress which can be put in a similar form. Upon deter-
mining Ur, Ue, and az for ~..m. O (i.e., the elastic stresses),

the elastic total strains can be ccmputed by Hooke’s Law. For these
total strains the plastic ccurpments are evaluated as described earlier,
and a first iteration for stress is obtained. Subsequent iterations ~
follow the ssme procedue by using = the plastic strains the values de-
termined from the previous iteration. h those cases where it is sus-
pected that the elastic stress distributicm is likely to be less affected
by the plastic flow than the strain distribution, the plastic strains are
determined directly from the stresses snd the stress-strain relations as
given in appendix B.

SUMMARY OF RESULTS

A method has been presented for solvtig plastic deformation problems
in the elastic-plastic range. The method, one of successive appr@cima-
tions, is illustrated by four examples which included a flat plate, a
thin shell.,a solid cylinder, and a rotating disk. It was found that for
thermal stress problems accurate answers could be obtained with relatively
few success ive a~roximations. A technique for speeding up convergence is
also shown.

Lewis Flight Propulsion Laboratom
National Advisow Ccmm.itteefor Aeronautics

Cleveland, Ohio, Jhne 20, 1957

.

.
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APPENDIX A

SYMBOLS

.

.

‘1’% ’*3

a,b

C~jC2>c3~c4

c

C1JC2JC3)C4

E

G

G(x)

H

h

11)12

Kl)K2

~.

P(x)

Q(x)

R

r

T

To

u

Ccmstants

cOnstants

integration constants

half width of thin plate

integration cmstants

modulus of elasticity

Lsr&’s Constszlt,~ & ~

function

thickness of thti shell
.
—

thickness of rotating disk +

integrals

ccmstants (eqs. (B6))

length of thin shell

F

.—
4 R2H2

characteristiclen@h of thin shell,
3(1 - V2)

fullction

??unction

mean radius of shell, or radius of solid cylinder
-.

radial distsnce to arbitrary petit in solid cylinder
or rotating disk —.

temperature above arbitrsxy zero

arbitrary constant

axial displacement

temperature
●

of point on middle surface of shell
.



radial displacement
positive inward

21

of petit on mitie surface of shell,

ratio of axial coordtite of shell.to characteristic
lengthJ or axiti coordinate of thin plate

distance along width of thin plate

radial coordinate of thin shell measured from middle
surfacej positive inward, or axial coordinate of
long solid cylinder

linesr coefficient of thermal expansion

conventional strati in tensile test

equivalent plastic strain

equivalent total strain

strains in x-, e-, z-, and r-directionsj respectively

plastic psrts of ‘xj ‘eJ ez, and er, respectively

tsmgential coordinate

Poissm’s ratio

integration variable

density

equivalent stress

nomal. stresses in x-, e-, r-, and z-directions,
respecttvely

rotational speed of disk
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APPENDIX B

cALCUIATIm Cl?PLASTIC ST!RA.INS

The defomaticm theory of Elasticity is used wtth the three usual
assumptions that the directions of the principal strains coincide tith
the directimm of the prticipal stresses, that the ratios of the prin-
cipal shear strains are equal to the ratios of the principal shear
stresses, and that the volume remains constant in the plastic rsnge.
These assumptions inply

)
E -e
r EJ ‘r-Gz %-ez=—

}

—=K1
‘r -Isear-az ‘CT@ -lSz

%+%+6 zP=o

By substitutingthe stress-strain relations \

into the first part of equatims (Bl], it can sJ.sobe shown that

where

K1 =
l+V

K2+~

(Bl)

(B2)

(B3)

(B4)

IP

“E-*
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Then, by squaring and adding the equations in (Bl) and (B3) it r&il.y
folbws that

3 ‘et
%=z=

32
%2 =2.=

1

Hence, by the relation between Kl and ~ in eqwtion (B4)

.t=w%+.
e 3 E ep (5)

The plastic strains can be determined in terms of the total strains by
dividing equation (B3) by eqmt ions (Bl) and applying equations (B6):

‘m
- =G E - E= EG - Ez % _ ‘e~

= ‘e-% ‘~ ‘et
(B7)

% - =G

Solving equatim (B7) and the incctm.pressibilityrelation in equations
(Bl) results in equations (4).
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EQUATIONS FOR THIN CIRCULAR SHELL

The equilibrium equations for a thin circular cylindrical shell are
given in reference 4:

\

where

J’

E/2

‘e = credz
-H/2

}
H/2

% J/
= axz dz

-H 2 J

(C!2)
.

.

The stress-strain relations, including the plastic strains, are

E
ax =

1 [

}

1-Vz %-~T-%p+@e-~-%Jp)

[

(C3)
E

%=1-V2 %3-d-%p +v(e’-a#T-
%]

The strati displacement relations are ~

du d2w z
‘x=~- 22 d’2

I (C4)

:‘e =-- J
●

✎
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*

.

Substituting ecy.mtions(C4) into (C3] gives

E

[

du dzw—.
ax ‘

1
-v22dx ~2&2=-=’T - ~+v(-

E

[ (

du d2w
‘e=l-V2 ‘#-aT -=ep+vZ&72*2—-

:-

z-

‘ep - d 1]aT -
%?’l’

Frcm the first equation of equations (Cl) and (C2),

‘e (=-EH :+
1J

H/2

E %p dz+aT
-E/2 )1

(C5)

(C6)

} (C7)

Substituting equation (C6) into the first of equations (C4) gives

J
H/2

+(l+v)a.T+~ (em + veep)dz - #& Z%=V: (C8)
-H/2

Also, from the secmd of equations {Cl),

d4w
—+4w=-4FM!-
C3X4

To obtati Cz, the

Substituting

third part of

a =
z

(C9)

third stress-strain relation is used:

[
%=;=z- 1

V(=X+ ~e) + Ezp+ ~ (Clo)

O and equations (C3) into equatia (C1O) gives the

equations (16).
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APPENDIX

PLASTIC STRAIN

h order to obtain the chart shown

D

CHARTS

in figure 4,
relations with az = O we written as follows: -

* (ax -ex-d=~ Vae) + Cq
1

Also,

(Dl)

(D2)

.

Substituting equations (D2) into (Dl) gives

E -CM!=

[

1+2(2 -Vjae 1 llfl - 2v) ae
x 3E ~%P+3 E 1—Eep‘ep

1

(D3)
l+;U%

‘e -
UT =

E
+~(1-2V)oe

‘ep
‘ep E —%‘ep

With the above equations and the stress-strain curve for the mate-
rial, a two-parameter fsmily of curves can be plotted giving the total
strains for any pair of plastic strains ~ and em. Thus,

(1) An arbitrary convenient value is chosen for ea.

(2) A series of values are chosen for ~. For each of these values,

(a) Compute

(b) Read ae

(c) Compute

eep frcm equatims (B5).

frmn the stress-strain curve.

% -dand~e- a!l from equations (D3). Thus,

.

the stress-strain

one curve of the family is obtained.
*

(3) To obtain the other curves, new values are chosen for ~@, and
the process is repeated in each case.

●
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The limiting curve of zero plastic strain is an ellipse abcnztthe
origin as shown in figure 4. AnY point inside this ellipse correspcmds
to zero plastic strain.

.

*
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APPENDIX E

SOLID cYLrrmER

NACA TN 4088

.

.

Consider an infinitely long
temperature distribution T(r).

The compatibility relation is

circular cylinder which has a radial
The equilibrium equation is

(7 -a --
r e

=0r (El)
—

% -

Substituting equatims (29) into

(E2) “

(El), assuming E cm.stant, and el@-
inattig ~r by use of eq~tion (E2) give

~E~(r2’el==a*+=+~(r’Q’-=*(E3
Integrating equation (E3) results in

J’
r

J
r

l+V1 1 -al
‘e=~~ cLTrdr+— —

1 -v
0

rz ~ ‘Wr‘r+

.

.

For a solid cylinder C2 must equal zero_. Also,
rewritten as

~.

equation (E2) can be

(E5)

By using equaticm (E3),

l+ V=+
% = -% +1-V

equation (E5) can be written as:

J“’

r
1-2V 1 --2V e - ee

1 -v %+ l-v r
dr + 2cl

o
(E6)

r

.
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TO determine e., use is made of the fact that e. is a constant and
that

a-

J
R

azr &c
o

ii

= o (E7)

Substituting the last of eqyations (29) into (E7) and using equtions
(E4) and (E6) enables ~z to be determined. To obtain Cl, the s~fa~e

s boundary condition ar(R) = O is used. Substituting the first of eqya-
In
+ timm (29) into this rekt ion enables Cl to be calculated. The final

results are given in equations (28).

.

b

.

.
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.

RCTATING DISK

The derivation of the equations for the rotating disk tith a radial
temperature distribution is very simi.lm to the derivations of the equa-
tions for the long solid cylinder (appendti”E). For the disk probl~,
the axial.stress ‘z is assumed to be zero, and the sxial strain ez
is no longer a constant.

*
The equilibrium equation for this case is

#

The compatibilityy equation is the same as equation
strain relations with az equal to zero become

(Fl)

(E2}, and the stress-

Eur=—
[
Er + we -

1(’w + V~~p}- (1 + v)a.T
1-V2

[ 1

(F2)
E

1
- (=Gp + V~Q) - (1 + v)aTae=l-v2 ‘e+ver

For a parallel-sided disk with E assumed constsmt, the solution
is readily obtained. Substituting equations (F2) into (Fl) and using
equation (E2) result in

4~(r’il=-’-2p2r2r
sad, m% er integrating,

J J’%3=-Q##f++ ‘L-+% ‘%’”~+
o 0

J’l+vr CZJ C*
r(e (F4)+eep)dr+~+~

2r2 O Q

.

*

.

.
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where for a solid disk C4 must vanish. To obtain ~, equation (F4]

is substituted into equation (E2) resulting in

The term e=

zero. Thus,

‘z =

The constant

stress due to
becomes

ar(R)

1- ~2 ~2r2
= -E -——e E 2

+(l+. v)anem+v em+

(1 - v) L‘522a ti+c3
r

(F5)

can now be computed from equations (B2) with Uz taken as

‘+(er+E~) -++(Gq+e@l+ +++d1
(F6)

C3 is evaluated from the known rim loading. E the rim

the rti loading is err(R),the first of equations (F2)

E

[
‘~ %

1
+ V% + (~ + Veep) - (1 + V)UT (F7)

1 r==

Substituting equations (F4) and (F5] into equation (F7) enables C3 to

be calculated. The ftial eqyations are given in equations (30).
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A3’PENDIXG

EFFECT OF PREVIOUS PLASTIC STRAIN

If the body under consideration has undergone previ~s pl.astic
strain such as that during a themnal shock in which the stresses and the
plastic deformatims vary with time, a complete series of solutions must
be carried out for successive time intervals. The equations for the
strains remain the ssme except that each plastic strain term such as +

~ is replaced by ~e@+AeW, where X% is the total accumulated f“

plastic strati up to the previous time and &~ is the additional plas-

tic strain during the time interval under ccmsideration. These strains

2% and EGti are known from the previous”calculations, and the total

strain eqpations are solved by successive approximation to obtain the
change b plastic strains A=~andh

@
as well as the total strains

after the new time interval.

In carrying out this type & calculati~n for successive time imter-
vals, a thne may eventuall.ybe reached whm””scinepoint in the body beg-ins
to unload, that is, ae starts decreasing. When this tiresis reached,
no additional plastic flow will take place at this point, and unlading
will prcceed along u elastic line such as CC’ in figure 1. At this

—

station then, the plastic strains are assmed to he zero from this time .

on. The successive apprwimations sre continued in the usual manner until
all points in the cylinder begin to unload or equilibrium conditions ere
reached.

This type of procedure of adding the plastic flow occurring after
each time increment to the previously accumulated plastic flow is equiv-
alent to the assumption that, as the load and temperature change, the
stress positim on the new stress-strain curve would be the ssme as if
a test specimen were loaded above the yield point, the load removed, the
t+erature changed, snd a new load applied. This assumption is illus-
trated in figure 11 h which point A represents a loading at the first
temperature conditions; the dotted line AB represents the unloading path;
the curve BCD shows the stress-strain curve at the new temperature; s.nd
point C gives the new stress position. T@total strain at this point C
is given by the smn of three strains: the residual strain caused by the
first loading, the elastic part of the strain causedby the second load-
ing, and the plastic strain causedby the second loading. -,—-

When the foregotig procedme is applied, the curve E!CDmust, of
course, represent the true stress-strain ctive at the new temperature of
a material that has already been subjected to the plastic cycle 0A8. In *
general, this new stress-strain curve is different from the stress-strain

*
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curve at the given temperature & a material that has not been subJetted
to plastic flow. However, umless data are available, it ~ be necessary
to assume that the curve BC!Dis the stress-strain curve at the given
t~erature of a specimen of virgin material. Results obtained in this
way, however, should be treated tautiously stie this effeet may be
appreciable.
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TABLE 1. - PLA8TIC FLOW CALCULATIONS

+

1

2

3

4

5

6

7

L
8
9

10

11
;

Y %JJ

o

.1 0

.2 0

.3 0

.4 0

.5 0

.6 0

.7 0

.6 0

.9 0

.0 0

iq. 113)

1. 9xlo-3

1.8

1.7

1.4

1.0

.5

-. 2

-. 9

1.7

2.7

5.8

o.7xlo-3 1. 7tio-3

.6 1.6

.5 1.5

.3 1.2

0 .8

0 .3

0 -. 4

0 -1.1

-. 5 -1.9

1.5 -2.9

2.5 -4.0

(a) Flat plate

=1==
o.5Xlo-3 1.6x10-:

.4 1.5

.4 1.4

.2 1.1

0 .7

0 .2

0 -. 4

-. 1 -1.2

-. 7 -2.0

1.6 -3.0

2.7 -4.0

(b) TMn ehell

-t-

(F$! I) (Eq. !13)

0.4x10-3 1.6%10-3

.3 1.4

.1 1.1

0 ,7

0 .2

0 -. 5

-. 2 ,-1.2

-.
6 1-2.0

1.7 -3.0

2.7 -4.1

m
%-*.(16)) (d?$] pig.6]

L.eaxl O.ecum .o.7?ua&

.E45 -.7*

Am -.X9

.Mn -.@’lo

.m -.-a

.fa -, MC!

n
+.lm ..9s0

J. -3,= -sum

4.K9 -z.m

..1- -@.o’m

.Sm +.60

9.= -2.=

4.OCQ -8.7M

5,- -2.=

[2!1)
o. 4xlo-~

.4

.3

.1

0

0

0

-. 2

-. 8

1.7

2.8

Eq. s(13)

1.6n0-:

1.5

1.4

1.1

.7

.2

-. 5

-1.2

-2.0

-3.0

-4.1

(Fl~I)

o .4xlo-~

.4

.s

.1

0

0

0

-. 2

-. 8

1.7

2.6

-.’

P 1
u. (=)1 (m. I*)) %

(Ea.(241) “

● ✎ ● ✌

I I ,, 1, ,, , I ,,’,’ II, ‘7afs7”.’
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,tatlon

1

2

3

4

5

6

-?

tatlon

1

2

3

4

5

6

7

a

9

10

11

F

I

.75

.80

.85

.90

.95

.Ooc

aT

9.5ono-~

9.50

9.29

8.81

7.68

7.06

6.83

W-5 baok
* r

TABI.E 1. - Concluded. PIMTIC FLW CALCDIATION8

%
PFevl -
Ous

pproxi

atlon)

0

0

0

0

0

0

0

.5 1.045 1.515

1.0 1,33 1.459

1.5 1.71 1.376

2.0 2.47 1.256

2.5 3.80 1.089

Sio 5.415 1.070

5.5 7.315 1.410

4.0 9.5 1.904

4.5 11.88 2.290

3.0 14.25 2.498

(c) Long solid oylimlar

P%: (M. ‘?28))
Ous

pproxi

atlon)

o 9.457W0-3

o 9.462

0 9.085

0 8.240

0 6.236

0 5.274

0 5.045

%(PRVIOUB

J&x&i
l.567)clo-

1.517

1.351

1.144 .

.7289

.1111

-.4286

J .175

.2.298

.3.637

.4.996

9. 457xlo-3 8.912 x10-3 0.363 xl.0-2

9.452 0 .363

9.439 0 .310

9.393 0 .668

9.299 0 1.926

9.109 0 2.494

8.911 0 2.578

(d) Rotatlngdlak

3’W’?30)) (Eq. ~30) ) (Eq. c;30))

3.757x@ 3.757 xlo-3 -3.247 x10-:

3.780 3.764 -3.033

3.983 3.845 -2.490

4.250 3.942 -1.776

4.862 4.104 -.3886

6.022 4.381 1.913

7.614 4.797 4.s71

9.773 5.362 6.964

.2.2e 8.o76 .10.00

.4.83 .s.!311 13.61

,7.1’2 7.024 17.18

4.669x10-3 3,441xlo-

4.643 5.?)17

4.270 3.040

3.919 2.721

3.277 2.124

2.369 1.304

2.035 .9872

2.578 1.469

3.823 2.446

4.888 3.864

6.235 4.982

($7.

o xlo-3

o

0

0

0.91

1.40

1.48

45a4

(%:.
(4))

oxlo-3

o

0

0

-.907

.1.397

A.477

%p

(Eq. (4))

1.720KL0-3

1.657

1.573

1.466

1.298

1.047

.9.299

1.371

1.806

2.303

2.491

.

(%.
(4))

oxl-o-

0

0

0

0.545

.754

.738

(Bq:e14 ) )

1. 720x10-r

1.800

1.474

1.252

.8087

,1908

-.3908

1.142

2.279

3.620

4.962

;
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